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Chapter 1

Mathematical Preliminaries

1.1 Vector Spaces, Basis Sets, Summation Convention

1.1.1 Axiomatic Approach

We work with quantities like vectors in the 3D world. We would like to work on the 3D Eu-
clidean vector space R3. Magnitude and distance between objects comes from the Euclidean
properties. Real analysis stars with a concept of a field. A field is a bunch of quantities that
satisfies numbers of axioms. These numbers are the foundation of fields. 14 axioms define
the real numbers R. From the definition of real numbers we want to define vectors. Vectors
are more general tho, they can be functions. The definition of distance and a magnitude
in a vector space can differ tho. These definitions comes from inner product operator. For
example dot product is a measure of how two vectors are conforming each other. A norm
of the vector space is the definition of a length of a quantity in the Vector space. To mea-
sure the distance we can define a metric over the vector spaces, this does not have to be
independently defined, it can be induced from the norm of the vector space.

For the Euclidean inner (dot) product: a · b =
∑

i aibi
For the Euclidean norm: ||a|| =

∑
i a

2
i

For the Euclidean metric: ||a− b||

1.1.2 Vectors

Basis Sets

Consider
∑n

i αivi = 0 where vi 6= 0, then vi are linearly independent iff αi = 0∀i, linearly
dependent otherwise.

If a vector space V can accommodate at most n linearly independent vector then it has
dimensions n: Rn.

Any choice of n linearly independent vectors constitutes a basis for n dimensional vector
space.

vi are orthogonal if vi · vj = 0 unless i = j
vi is normalized if ||vi|| = 1 ∀i
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Orthonormal basis set ei are both orthogonal and normalized. Any vector in the vector
space can be expressed like this:

a =
n∑
i

aiei

where ai = a · ei.
Kronecker Delta:δij = 1 if i = j and 0 otherwise. Which can be expressed like δij = ei · ej
In this course we are by default work with orthonormal basis. We can go from not

orthonormal basis to an orthonormal one with grahm-schmidt orthonormalization.

Summation Convention(Einstein Notation)

a · b =
∑
i

aibi = aibi

Rules:

� repeated ”dummy” index indicates summation, others are free indices.

� no index may appear more than twice and indicate summation

A11α1 + A12α2 + A13α3 =
3∑
i=1

A1iαi = A1iαi

A11B11 + A12B21 + A13B31 = A1iBi1

AB = C, Cij = AikBkj

Substitution Property of Kronecker Delta: δijAjk = Aik

δijAij = Aii

1.2 Triple Product, Linear Operators, Tensor Product

Vector Product

A basis can be right or left handed.
Vector (cross) product:

ei × ej = eijkek

Permutation symbol:

eijk =


1 if ordered in clockwise + even permutations

−1 if odd permutations

0 otherwise

Note that eijk = −ejik = ejki
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a× b = (aiei)× (bjej)

= aibjei × bj
= aibjeijkek

= aibjekijek

a · (a× b) = (alel) · (aiei × bjej)
= alaibjeijkel · ek
= aibjakeijk

= akbjaiekji

= −aibjakeijk = 0

Triple Product

[a, b, c] = a · (b× c)
Triple product behaves like eabc with respect to change of orders:

[a, b, c] = −[b, a, c] = [b, c, a]

[a, a, c] = 0

[a, b, c] = 0 7−→ {a, b, c} are linearly dependent

1.2.1 Tensor Algebra

An operator A uniquely maps a ∈ Rn → b ∈ Rn : Aa = b
A is linear if

1. A(αa) = α(Aa)

2. A(a+ b) = Aa+ Ab
Combine these two with how it acts on scalars and other linear operators.

3. Distributivity

4. Associativity

5. Identity tensor I

6. Zero tensor 0

We refer to this linear operator as a tensor.{
in Particular, A is a 2nd order tensor (matrix)

Specifically, a is a 1st order tecnsor (vector)

Examples for a second order tensors are stress, strains.
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1.2.2 Tensor Product

Let a = aiei → {a} = {a1, a2, ...} (array) and let b similar. Then

{a}T{b} = aibi = a · b

.

{a}{b}T =

[
a1b1 . . .

...

]
= [A]

Aij = aibj

A particular type of 2nd order tensor: a⊗ b

a⊗ b = (aiei)⊗ (bjej)

= aibj︸︷︷︸
components

ei ⊗ ej︸ ︷︷ ︸
basis for 2nd order tensor

Operation on a vector:

(a⊗ b)c = (b · c)a

In general

A = Aijei ⊗ ej

1.3 Tensors, Symmetry, Invariants

To find the corresponding entries of a tensor use following

Aij = ei · Aej

4th order tensors will appear in elasticity but not that prevalent in the rest of it. For example

(C) = A⊗B → Cijkl = AijBkl

C = Cijklei ⊗ ej ⊗ ek ⊗ el

[I] =

1 0 0
0 1 0
0 0 1



Ia = (ei ⊗ ei)(ajej) = aj(ei · ej) · ei = a
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For the tensor operation on another tensor we did not define any constraint yet but we can
show the consistency of the previous theorem with the following example:

AB = C

(Aijei ⊗ ej)(Bklek ⊗ el)c = Cc

(Aijei ⊗ ej)(Bklclek) = Cc

(AijBjlclei) = Cilclei → AijBjl = Cil

Alternatively we can realize a rule:

(a⊗ b)(c⊗ d) = (b · c)a⊗ d

For the transpose effect on these results is as the following:

ATB = C → Cij = AkiBkj

ABT = C → Cij = AikBjk

1.3.1 Transpose/Symmetry

component/extrinsic representation:

ATij = Aji this comes with a caveat

intrinsic representation
a · Ab = ATa · b

Symmetric tensor
AT = A

(a⊗ b)T = b⊗ a

AT = Ajiei ⊗ ej

ATa = b→ bi = Ajiaj

Skew symmetric tensor:
AT = −A

Aji = −Aij
A tensor has 9 defining components, a symmetric tensor has 6 and a skew symmetric tensor
has 3 defining component(diagonals should be 0) and this can be used as a vector in a sense.
Notice this is true for 2nd order tensor. For any tensor, once can define:

A = Asym + Askw


Asym =

1

2
(A+ AT )

Askw =
1

2
(A− AT )

7



1.3.2 Invariants

For any A operating on R3 we define 3 scalars: invariants. Choose any set of linearly
independent vectors: {a, b, c}

IA =
[Aa, b, c] + [a,Ab, c] + [a, b, Ac]

[a, b, c]
= tr[A] = Aii

IIA =
[Aa,Ab, c] + [Aa, b, Ac] + [a,Ab,Ac]

[a, b, c]
=

1

2
[A2

ii − AijAji] =
1

2
[tr[A]2 − tr[A2]]

IIIA =
[Aa,Ab,Ac]

[a, b, c]
= det[A] = eijkAi1Aj2Ak3

1.4 Inverse, Eigenvalue Problem

1.4.1 Inner/Dot/Scalar product on Tensors

A ·B = tr[ABT ] (intrinsic)

Since ABT = C with Cij = AikBjk and tr[C] = CiiAikBik.
A spherical tensor A is such that A = αI
A devitoric tensor A is such that tr[A] = 0

The spherical part of a tensor is Asph =
1

3
tr[A]I. This 1/3 assumes we are in 3 dimension

for a 2nd order tensor.
The deviatoric part of a tensor is Adev = A− Asph

1.4.2 Inverse and Cofactor

A−1 satisfies A−1A = AA−1 = I.

A−1
ik Akj = AikA

−1
kj = δij

Inverse exists iff det[A] 6= 0.
Cofactor of a tensor A#

Aa× Ab = A#(a× b)

When inverse exists A# = det[A]A−T → A−1 =
1

det[A]

adjugate︷ ︸︸ ︷
A#,T

[A#]: cofactor matrix

[A] =

[
1 2
3 4

]
→ A# =

[
4 −3
−2 1

]

[A] =

1 0 4
3 2 9
0 2 5

→ A# =

−8 −15 6
8 5 −2
−8 3 2


8



Notice that IIA = tr[A#] in the case of last operator the invariants are:

IA = 8

IIA = −1

IIIA = 16

1.4.3 Eigenvalue Problem

We seek vector v for A such that
Av = λv

For non-trivial solutions

(A− λI)v = 0→ det(A− λI) = 0

For 3D and 2nd order tensors the solution comes from the char equation:

λ3 − IAλ2 + IIAλ− IIIA = 0

Cayley-Hamilton Theorem

A tensor satisfies its own characteristic equation:

A3 − IAA2 + IIAA− IIIAI = 0

which defines the inverse from another way:

A−1 =
1

IIIA︸ ︷︷ ︸
1/det[A]

[A2 − IAA+ IIAI]︸ ︷︷ ︸
A#,T

0 = det[A− λI︸ ︷︷ ︸
B

]

=
[Ba,Bb,Bc]

[a, b, c]

=
[Aa,Ab,Ac] + [Aa,−λb,Ac] + [−λa,Ab,Ac] + [Aa,Ab,−λc] + [Aa,−λb,−λc] + . . .

[a, b, c]

+[−λa,Ab,−λc] + [−λa,−λb, c] + [−λa,−λb,−λc]
[a, b, c]

= IIIA − λIIA + λ2IA − λ3

If A is symmetric then


λi ∈ R
vi ∈ R3

λi 6= λj → vi · vj = 0
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{λ1, λ2, λ3}: spectrum of A . Spectral decomposition of this tensor is:

A =
3∑
i=1

λivi ⊗ vi

in other words A = AI = A(vi ⊗ vi) = (Avi)⊗ vi =
∑

i λi(vi ⊗ vi)

A symmetric tensor A is positive

{
definite

semi− definite
if

{
λi > 0

λi ≥ 0
negative is sign

reversed. Alternatively A sym is pos def if a · Aa > 0 ∀a 6= 0
if A :pos def A1/2 =

∑
i

√
λivi ⊗ vi

if A :non semi-def A−1 =
∑

i λ
−1
i vi ⊗ vi

We can also express invariants with eigenvalues:

IA = λ1 + λ2 + λ3

IIA = λ1λ2 + λ1λ3 + λ2λ3

IIIA = λ1λ2λ3

Axial Vector

W :skew→ W T = −W :3 independent components like a vector. Let Wv = v′ → w×v = v′.
Here w is the axial vector of W : Wv = w × v

det[W ] = det[−W T ] = (−1)3det[W T ] = −det[W ] → det[W ] = 0 which means that at
least 1 eigenvalue is zero.

1.5 Polar Decomposition, Change of Basis, Grad-Div-

Curl

Orthogonal Tensor

An orthogonal tensor is not quite skew, not symmetric as well. QT = Q−1 → QQT = I

det[Q] =

{
1 proper orthogonal tensor

−1 improper orthogonal tensor

These tensors has at least one eigenvalue as 1 Qa = a. For the proper orthogonal tensor
you can obtain rotations but with the improper orthogonal tensor you get a mirror like
behaviour.

1.5.1 Polar Decomposition

Take any invertible tensor E admits two particular decomposition:

E = V R :left polar decomposition

E = RU :right polar decomposition
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Here U, V are symmetric positive definite tensors and R is orthogonal tensor.

1.5.2 Change of Basis

2 sets of orthonormal basis ei, e
′
i = Qei → if Q is given.

Q = Qmnem ⊗ en → Qmn = em ·Qen = em · e′n
Q = QI = Qei ⊗ ej = (Qei)⊗ ej = e′i ⊗ ej

so Q =

[
Q11 Q12 . . .

...
. . .

]
in the ei ⊗ ej

but Q =

1 0 0
0 1 0
0 0 1

 in the e′i ⊗ ej

Let a = a′ie
′
i = amem = a′iQei = a′i(Qmnem ⊗ en)ei = aiQmiem → am = Qmia

′
i or a′i = Qimam

ei
Q
−→ ei {a}

QT

−−→ {a′}

Compare with a physical rotation b = Qa:

b = b′ie
′
i

= Q(aiei)

= aie
′
i → b′i = ai

But

b = bmem

= (Qmnem ⊗ en)(aiei)

= Qmiaiem → bm = Qmiai

Hence

ei
Q
−→ ei {a}

Q
−→ {b}

It is important to distinguish between the change in interpretation vs the change in perceived
physics.

For tensors one can derive similar results:

(i) Change of basis, A = Aij(ei ⊗ ej) = A′ij = ei ⊗ ej

A′ = QTAQ or A′ij = QT
ikAklQlj = QkiAklQlj
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(ii) Rotation,

B = QAQT or Bij = QimAmnQnj
T = QimAmnQjn

Let Aa = b

QA(QTQ)a = Qb

(QAQT )Qa = Qb

(B)Qa = Qb

Here B maps the rotation of a to rotation of b.

1.5.3 Tensor Calculus

We will have a domain, in general this will be a 3D object. We will indicate a point P on or
in the object with x. Domain will be represented with D and boundary will be ∂D(surface)
and n as the outward unit normal. We will have scalar/vectors/tensors as functions φ(x, t),
v(x, t), T (x, t).

Gradient

One tensor level up

∇φ = grad[φ] =
∂φ

∂x
=
∂φi
∂xi

ei = φ,i ei

∇v = grad[v] =
∂v

∂x
=
∂vi
∂xj

ei ⊗ ej = vi,jei ⊗ ej

∇T = grad[T ] =
∂T

∂x
=
∂Tij
∂xk

ei ⊗ ej ⊗ ek = Ti,j,kei ⊗ ej ⊗ ek

Divergence

One tensor level down

div[v] = tr[grad[v]] =
∂vi
∂xi

= vi,i → ∇ =
∂

∂xi
ei, div[v] = ∇ · v

div[T ]︸ ︷︷ ︸
t

·a = div[ T Ta︸︷︷︸
Tkiakei

] ∀a : constant

(tkek) · a = (Tkiak),i

tkak = Tki,iak → tk = Tki,i

div[T ] = Tki,iek

= Tij,jei

=
∂Tij
∂xj

ei
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Curl

Stays in the same tensor level.

curl[v]︸ ︷︷ ︸
c

·a = div[v × a] ∀a : constant

curl[T ] · a = curl[T Ta]

cjej · a = div[ eijkviaj︸ ︷︷ ︸
dk

ek]

cjaj = dk,k

cjaj = eijkvi,kaj → cj = eijkvi,k

curl[v] = cjej

= eijkvi,kej

= ejkivi,kej

= ∇× v

1.6 Integral Theorems

1.6.1 Integral Theorem

Derivative operation can be generalized φ(v) → ∂φ

∂vi
ei or φ(T ) → ∂φ

∂Tij
ei ⊗ ej. In general

A(B)→ ∂Aij
∂Bkl

ei⊗ ej⊗ ek⊗ el. From these we can derive identities:
∂v

∂v
= I,

∂A

∂A
= II(fourth

order identity tensor)
In the integrals we generally want to convert volume integration to the surface integration.

These 4 theorems fit into a stencil and this stencil is as follows:∫
D
(. . .),kdv =

∫
∂D

(. . .)nkda

Assume continuous functions φ/v/T Volume boundary is a surface and surface boundary is
a line.

(1) ∫
D

grad[φ]dv =

∫
∂D
φnda

∫
D
φ,idv =

∫
∂D
φnida
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(2) ∫
D

grad[v]dv =

∫
∂D
v ⊗ nda

∫
D
vi,jdv =

∫
∂D
vinjda

(3) Gauss-Ostragradsky Theorem(divergence theorem)∫
D

div[v]dv =

∫
∂D
v · nda

∫
D
vi,idv =

∫
∂D
vinida

(4) ∫
D

div[T ]dv =

∫
∂D
Tnda

∫
D
Tij,jdv =

∫
∂D
Tijnjda

14



Chapter 2

Kinematics

2.1 Configuration and Motion

Kinematics is analysis of motion and deformation. Admit an observer(Ω) which is the
frame of reference. Let there be a body B, reference(Initial(t=0), undeformed(stress-free))
configuration R0 and current/spatial(deformed) configuration R. M is on the body, P is on
the R and P0 is on the R0:

χ0(M) : P0 ↔M

χt(M) : P↔M

χt(X) : P0 ↔ P

A body is a collection of particles. This body will move and deform with time. Every
particle in this body or say list we know its position(x) with the χt(M). Identify each M
with X = χ0M and x = χt(M) position vectors. ξ : Euclidean Point Space, P0,P ∈ ξ and
motion/deformation map is x = χt(X)(path of a particle).

velocity: v =
∂χ

t
(M)

∂t
= v(M, t)

acceleration: a =
∂v(M, t)

∂t
= a(M, t)

For clarity/precision distinguish configuration basis sets:{
X = XAEA

x = xiei

Similarly for operators:
Grad[v] =

∂v

∂X
=

∂vi
∂XA

ei ⊗ EA

grad[v] =
∂v

∂x
=
∂vi
∂xj

ei ⊗ ej

Similar with the divergence and curl: Div[v], Curl[v].
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2.2 Lagrangian and Eulerian Representations, Mate-

rial Time Derivative

χt(X) is the motion map of the particles. Here this will be satisfied:

v =
∂χt(M)

∂t
=
∂χt(X)

∂t

2.2.1 Lagrangian and Eulerian Representations

f =

{
f̂(x) = 2x2

f̌(y) = 2y
→ f̂(2) = f̌(4) = 8

In general a function may have different representations

φ = φ̌(M, t) = φ̂(X, t) = φ̃(x, t)

φ̌: we record the value of φ for a given particle M at a given time. This is the material
representation.

φ̂: we record the value of φ for a given particle M and that is associated(labeled) with
X. This is called the lagrangian representation.

φ̃: we record the value of φ for a given particle M that happens to occupy the position
specified by the x at time t. This is the Eulerian(Spatial) representation.

Material Time Derivative

This is

dφ

dt
= φ̇ =



∂φ̌

∂t
=
∂ ˇφ(M, t)

∂t

∣∣∣∣
M is fixed

∂φ̂

∂t
=
∂ ˆφ(X, t)

∂t

∣∣∣∣
X is fixed

∂φ̃(x, t)

∂t
+
∂φ̃(x, t)

∂x

dx

dt
=
∂φ̃

∂t
+ grad[φ] · v

Here
∂φ̃

∂t
is the rate of change of φ at a fixed point P in ξ at time t. This is also called

the spatial/local time derivative.
grad[φ] · v is the rate of change of φ due to the motion of the particle which happens to

occupy P at time t.
In particular:

a = v̇ =
∂v̌(M, t)

∂t
=
∂v̂(X, t)

∂t
=
∂ṽ(x, t)

∂t
+

∂ṽ

∂x︸︷︷︸
L: velocity gradient tensor

·v
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L = Lsym︸︷︷︸
D

+Lskw︸︷︷︸
W

D : Stretching or rate-of-spin tensor
W : Spin or vorticity tensor

Temperature Sensors and a Fly

Lets say that fly(depicting a particle) has a v speed and it has a sensor attached to it and
measuring the temperature around a room. We are interested in the how fast temperature
changes as the fly moves around. In other words we want a material time derivative of
temperature with respect to the fly. Since sensor is moving with the fly this represents
the lagrangian representation. Let say that the velocity of the temperature is vL. The
temperature signal coming from this sensor is φ̂(X, t).

Lets imagine also a set of sensors scattered around the room, their positions are fixed
and this represents the eulerian representation. Signal from the this sensor will be φ̃x, t. We
want φ̇ which is the temperature change that fly experiences:

φ̇ =
dφ

dt

=
∂φ̂

∂t

=
∂φ̃

∂t
+
∂φ̃

∂x
· v

Lets have a set of sensors that are moving with a velocity vALE 6= 0 6= v. We want to have
the information from these sensors φ̄ than we need to take this velocity into account:

φ̇ =
∂φ̄

∂t
+
∂φ̄

∂x
· (v − vALE)

This representation is neither lagrangian nor eulerian. This is called Arbitrary Lagrangian
Eulerian(ALE) representation.

Particular types of motion

(1) Rigid body motion:

x = χ(X, t) = Q(t)X︸ ︷︷ ︸
rotation

+ c(t)︸︷︷︸
translation

Q : orthogonal

v = Q̇X + ċ

(2) Steady motion/flow: At a point in space the attribute wont change. In general flow is
not steady hence the spatial description has also time dependence.

v = v̂(X, t) = ṽ(x)

a =
∂ṽ

∂t
+
∂ṽ

∂x
· v =

∂ṽ

∂x
· v

17



Lets assume that we know the motion map χt(X). Line elements can stretch and rotate,
surface elements can stretch rotate, normal can change, volume elements can change their
shape and their volumes as well. When deformation introduced we are going to touch on
the strain element of materials as well.

2.3 Infinitesimal(Differential) Material Line/Surface/Volume

χt(X) : R0 → R and X ∈ R0, x ∈ R.
Now, lets have a line in R0 with length L going through coordinate S. Here S/s is the

arclength parametrization on R0/R. Then lets have a tangent to this line at the point X.
dX. Lets have infinitesimal increment on the archlenghts: dS = ||dX|| and ds = ||dx||.

For a surface element we can take a patch with a small area dA with an outward normal
vector N , these elements will deform to be da and n.

For a volume element we will have dV and dv.
Now, how do we go from R0 to R.

2.3.1 Material Line Element

dX → dx.

dX = dSM or
∂X

∂S
= M

dx = dsm or
∂x

∂s
= m

Now, m =
∂x

∂s
=

∂x

∂X

∂X

∂S

∂S

∂s
= FM

dS

ds
or dx = dsm = F (dsM︸︷︷︸

dX

) → dx = FdX. Here

F is the tensor that maps from X → x. This tensor F is called the Deformation Gradient
Tensor:

F =
∂x

∂X
=

∂xi
∂XA

ei ⊗ EA = FiAei ⊗ EA = F̂ (X, t) = F̃ (x, t)

Here ei ⊗ EA is a two-point tensors: one leg in R0 and other in R.

2.3.2 Material Surface Element

Lets have a two vector element that defines a parallelogram: dX1, dX2. N =
dX1 × dX2

||dX1 × dX2||
and dA = ||dX1 × dX2|| and dA = dAN . Same configuration for the components in the R.
Since we know the relation for the line elements dX1 and dX2 we can figure out the relation
for surface elements:

da = dan

= dx1 × dx2

= FdX1 × FdX2

= F#dX1 × dX2

18



Here emerges the Nanson’s formula:

dan = F#dAN

If we dot both sides with itself:

da2 = F#N · F#NdA2 = NF#T · F#NdA2 → da =

√
NF#T · F#N︸ ︷︷ ︸

arela stretch

dA

2.3.3 Material Volume Element

To construct a volume we need 3 line elements: dX1, dX2, dX3 for dV . Same configuration
for the R. Volume of this construct is

dV = dX3 · (dX1 × dX2)

= [dX3, dX1, dX2]

= [dX1, dX2, dX3]

This is the same for R: dv = [dx1, dx2, dx3]

dv

dV
=

[dx1, dx2, dx3]

[dX1, dX2, dX3]

=
[FdX1, FdX2, FdX3]

[dX1, dX2, dX3]

= det[F ] = J

So the next expression is the Jacobian of the Deformation/Mapping

J = det[F ] =
dv

dV
= Ĵ(X, t) = J̃(x, t) > 0

For physical deformations J should be greater than 0 because if it is less than 0 at some
point it should go through 0 as well which means a finite volume shrinking into 0 volume.

First recall that

d

dτ
det[A] = det[A]tr[

dA

dτ
A−1]

Using this we can fin the material time derivative for a volume element:

J̇ = Jtr[ḞF−1]

Ḟ =
d

dt

(
∂x

∂X

)
=

∂v

∂X
=

∂v

∂x︸︷︷︸
L

∂x

∂X︸︷︷︸
F

→ ḞF−1 = L

tr[L] = Lii = vi,i = div[v]→ J̇ = Jdiv[v]
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if div[v] = 0

{
for t ∈ (t1, t2) : motion is isochoric(volume preserving)

∀t : incompressible motion(J=1 always), like water and rubber

Remark: let v = viei ∈ R and V = VAEA ∈ R0.

FV = (FiAei ⊗ EA)(VBEB)

= FiAVB(EA · EB︸ ︷︷ ︸
δAB

)ei

= FiAVAei

Next calculation is not meaningful, this should not appear in the theoretical development:

Fv = (FiAei ⊗ EA)(vjej)

= FiAvj(EA · ej︸ ︷︷ ︸
?

)ei

= . . .

Now F T = FiAEA ⊗ ei and not FAiei ⊗ EA
vFV = F TvV = (FAiEA ⊗ ei)(vjej) · (VBEB)

How about F−1 :

I = δijei ⊗ ej

=
∂x

∂x

=
∂x

∂X

∂X

∂x

= FF−1

F−1 =
∂X

∂x

=
∂XA

∂xi
EA ⊗ ei

= F−1
Ai EA ⊗ ei

Alternatively we can check:

F−1F = (
∂XA

∂xi
EA ⊗ ei)(

∂xj
∂XB

ej ⊗ EB)

=
∂XA

∂xi

∂xj
∂XB

δijEA ⊗ EB →
∂XA

∂XB

= δAB
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2.4 Stretch and Strain

2.4.1 Stretch

dx = FdX λ =
ds

dS
> 0, if stretch> 1 then elongation, else if stretch< 1 contraction. For

example a rod with a length of L is stretched with ∆L. Here ε =
∆L

L
is engineering strain

at 1D. Here also S ∈ [0, L] and s ∈ [0, L+ ∆L]. Then λ =
∆s

∆S
=
L+ ∆L

L
= 1 + ε

λm = FM
dot−→ λ2 = FM · FM = M · F TFM Here C = F TF is Right Cauchy-Green

Deformation Tensor.

C = F TF = (FiAEA ⊗ ei)(FjBej ⊗ EB) = FiAFiB︸ ︷︷ ︸
CAB

EA ⊗ EB

Here F is invertible because J > 0 and it admits a polar decomposition F = RU . Hence

F TF = URTRU = U2 = C

Then this right cauchy-green deformation tensor is symmetric and positive definite. This
also admits the following:

λ =
√
MCM > 0

Eigenvalue problem for U = C1/2:

UVα = λαVα

U =
∑
α

λαVα ⊗ Vα

C =
∑
α

λ2
αVα ⊗ Vα

Here λα’s are principled stretches. Similarly

λ−1M = F−1m→ λ−2 = F−1m · F−1m = m · F−TF−1︸ ︷︷ ︸
b−1

m

here b = FF T is the Left Cauchy-Green Deformation Tensor.

b = FF T = (FiAei ⊗ EA)(FjBEB ⊗ ej) = FiAFjA︸ ︷︷ ︸
bij

ei ⊗ ej

F = V R→ FF T = V RRTV = V 2 = b

λ−1 =
√
mb−1m > 0 ∀m
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Eigenvalue problem for V = b1/2:

V vα = λαvα

V =
∑
α

λαvα ⊗ vα

b =
∑
α

λ2
αvα ⊗ vα

We are going to show that the eigenvalues of U and V are shared and these are coupled with
the rotation tensor R. One can argue F = RU = V R→ V = RURT . Here R contains pure
rotation but V and U are containing both stretch and rotation.

b = FF T = RUURT = RCRT =
∑
α

λ2
αRVα ⊗RVα → vα = RVα

So that the R = vα ⊗ Vα : two point tensor. Hence:

F = RU =
∑
α

λαvα ⊗ Vα

Here is the remark:

UVα = λαVα

RUVα = λαRVα

V vα = λαvα

2.4.2 Strain Tensors

If Strain goes to 0 then λα → 1 ∀α hence pure rotation no stretching. This strain tensor
should not be rotation sensitive.

ds2 − dS2 = ||dx||2 − ||dX||2

= FdX · FdX − dX · IdX
= dX (C − I)︸ ︷︷ ︸

2E

dX

Here E =
1

2
(C − I) =

1

2
(CAB − δAB)EA ⊗ EB is the Lagrangian(Green) Strain Tensor.

Alternatively

ds2 − dS2 = dx · dx− dX · dX
= dx · dx− F−1dx · F−1dx

= dx (I − F−TF−1)︸ ︷︷ ︸
2e

dx
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Here e =
1

2
(I − b−1) =

1

2
(δij − b−1

ij )ei ⊗ ej is the Eulerian(Almansi) Strain Tensor. Re-

lation between these strain tensors are the following expression:

F T eF =
1

2
(F TF − I) = E

We can generalize these strain tensor:

E(m) =
1

m
(Um − I) for m 6= 0

As m→ 0:

E(m) = lnU

Where lnU =
∑

α lnλαVα ⊗ Vα. lnλ = ln ds
dS

= ln(1 + ε)
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Chapter 3

Balance Laws

(i) Mass balance

(ii) Linear momentum balance

(iii) Angular momentum balance

(iv) Energy balance (1st law of thermodynamics)

(v) Entropy balance (2nd law of thermodynamics)

We will cover the first 3 balances in this section. Here we mention ”laws” and this means
that we assume their validity.

MB+LMB+AMB→ Laws of Motion(Kinetics)
Kinetics↔Kinematics
We also assume a closed system, which means the boundary of the body is a material

surface. Another remark is that the body in the reference configuration either the whole
system or any free body diagram. Hence we can analyze partitions on the body, There are
many boundary conditions like displacement boundary conditions(joints), force boundary
conditions(forces). There is also internal forces as well.

Differential equations govern the motion but the boundary condition is the activator of
this motion.

3.1 Mass Balance, Open vs Closed Systems

3.1.1 Mass Balance

m =

∫
B

dm =

{∫
R0
ρ0dV → ρ0 : referential mass density∫

R ρdv → ρ : spatial mass density

∫
R
ρ dv︸︷︷︸
JdV

=

∫
R0

ρJdV → ρ0 = ρJ
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Since we are in a closed system we conserve mass:

0 =
dm

dt
=

{
d
dt

∫
R0
ρ0dV (global statement) =

∫
R0
ρ̇0dV → ρ̇0 = 0 (local statement)

d
dt

∫
R ρdv(global statement) =

∫
R0

˙̄ρJdV → ˙̄ρJ = 0 (local statement)

Here ˙̄ρJ = ρ̇J + ρJ̇ = ρ̇J + ρJdiv[v] = 0→ ρ̇+ ρdiv[v] = 0

Integral Local

Spatial
d

dt

∫
R ρdv = 0 ρ̇+ ρdiv[v] = 0

Referential
d

dt

∫
R0
ρ0dV = 0 ρ̇0 = 0

Table 3.1: Boundary Conditions for Mass Balance in Closed Systems

3.1.2 Open vs Closed Systems

Suppose a material region, we are not analyzing the whole region bu a portion of it, this
portion might be open or closed. If the boundary of the region and itself conforms with the
surrounding area then it is closed however if it is not then there will be deviations in the
integrals for the both parts.

0 = ρ̇+ ρdiv[v] =
∂ρ

∂t
+
∂ρ

∂x
· v + ρdiv[v] =

∂ρ

∂t
+ div[ρv]

Therefore: Reynolds Transport Theorem(RTT) for a closed system is:

0 =
d

dt

∫
R
ρdv

=

∫
R
(ρ̇+ ρdiv[v])dv

=

∫
R
(
∂ρ

∂t
+ div[ρv])dv

=

∫
R

∂ρ

∂t
dv︸ ︷︷ ︸

volume contains
raw distrbution

that chages with time

+

∫
∂R
ρv · nda︸ ︷︷ ︸

Volume attempts to
encompass ρ at veloscity v

which happens to be
material velocity

(3.1)

Hence the rate of change of mass in a volume whose boundary conforms(closed) to the
material velocity.

Now we are going to tackle the other scenario where the boundary is not going to conform
to the motion of the particles and there will be discrepancy between domains.
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In general RTT for an open system, be aware we are taking the material time derivative
with the following operation:

0 6= D

Dt

∫
R
ρdv︸ ︷︷ ︸

Whose boundary moves
at an indepent(open)

velocity to engulf
more/less material

=

∫
R

∂ρ

∂t
dv +

∫
∂R
ρw · nda (3.2)

This independent motion is embodied by the w, if it is equal to material velocity then this
equation would be 0 hence the closed system. Here if we substract the equation 3.2 from the
3.1, this delivers the following expression:

0 =
d

dt

∫
R
ρd =

D

Dt

∫
R
ρdv +

∫
∂R
ρ(v − w) · nda

Or

D

Dt

∫
R
ρdv

(MB)︷︸︸︷
=

∫
∂R
ρ(w − v) · nda

For instance let w = 0 : −v · n > 0 mass influx, −v · n < 0 mass efflux.
v = 0 : v · n > 0 volume expand to engulf more material.

3.2 Linear and Angular Momentum Balance

For the mass conservation we introduced the following set of equations:

d

dt
m =

d

dt

∫
db =

d

dt

∫
R
ρdv =

d

dt

∫
R0

ρJdV → ρ̇+ ρdiv[v] = 0

Linear(Translational) Momentum of the material in R:

P =

∫
dP =

∫
R

p︸︷︷︸
ρv

dv =

∫
R
ρvdv

Angular(Rotational/Moment of) momentum of the material in R with respect to a stationary
x0(not necessarily the origin), here material point is at x and the difference between is
r0 = x− x0:

H0 =

∫
r0 × dP

=

∫
R
r0 × ρvdv

Laws of motion are separated into two forms:

(1) Integral/Eulerian

(2) Local(Differential)/Cauchy
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3.2.1 Euler’s Laws of Motion

There exists a (inertial/Newtonian) frame of reference such that Ṗ = F (LMB) and Ḣ0 =
M0(AMB). Here F is the net(resultant) force and M0 is net moment about x0. These forces
and moments can be decomposed as the body and the surface forces/moments:

F = FB + F S

M0 = M0
B +M0

S

Lets further inspect these decompositions:

FB =

∫
dFB

=

∫
R
fBdv

=

∫
R
ρbdv b : body force per unit mass

F S =

∫
∂R
tda t : traction

FB : gravity, electromagnetic forces etc
F S : due to contact with a surface

M0
B =

∫
r0 × dFB

=

∫
R
r0 × ρbdv

M0
S =

∫
r0 × dF S

=

∫
∂R
r0 × ρtda

So coupling the moments with the the forces will introduce some consequences, this means
that we are dealing with a non-polar medium, if we were to define new variables as in the
case of forces we could define polar medium. Non-polar medium, thus the stress tensor is
symmetric.

With all the assumptions and, we can restate the following. Integral/spatial forms of the
Euler’s laws of motion:

LMB :
d

dt

∫
R
ρvdv =

∫
R
ρndv +

∫
∂R
tda

AMB :
d

dt

∫
R
r0 × ρvdv =

∫
R
r0 × ρbdv +

∫
∂R
r0 × tda

If F/M0 = 0 then Ṗ/Ḣ0 = 0→ conservation law
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Returning back to LMB, where t̃(x, t, t) = T̃ (x, t)n is the cauchy stress tensor:

d

dt

∫
R
ρdv =

∫
R
ρbdv +

∫
∂R
tda∫

R0

ρ0v̇dV =

∫
R
ρbdv +

∫
R

div[T ]dv∫
R
ρv̇dv =

∫
R
ρbdv +

∫
R

div[T ]dv

Hence∫
R
(ρv̇ − ρb− div[T ])dv = 0→ div[T ] + ρb = ρv̇( local/spatial form of LMB)

Returning to AMB: T T = T local form of AMB.
To summarize, spatial form of LMB/AMB:

Euler(Integral) Cauchy(Local)

LMB
∫
∂R tda+

∫
R ρbdv = d

dt

∫
R ρvdv div[T ] + ρb = ρv̇

AMB
∫
∂R r0 × tda+

∫
R r0 × ρbdv = d

dt

∫
R r0 × ρvdv T T = T

Table 3.2: LMB and AMB Laws
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3.3 Symmetry of the Cauchy Stress Tensor and Cauchy’s

Theorem

Proof of the T T = T , r0 = x− x0:

(AMB :)
d

dt

∫
R
r0 × ρvdv︸ ︷︷ ︸
(I)

=

∫
R
r0 × ρbdv +

∫
∂R
r0 × tda︸ ︷︷ ︸
(II)

(I) =
d

dt

∫
R0

r0 × ρ0v =

∫
R0

(ṙ0 × ρ0v + r0 × ρ0v̇)dv

=

∫
R0

r0 × ρ0v̇dv

=

∫
R
r0 × ρv̇dv

(II) =

∫
∂R

r0 × Tn︸ ︷︷ ︸
eijk(Tklnl)ei

da

=

∫
R
(eijkr0jTkl),leidv

=

∫
R
eijk(r0j,lTkl + r0jTkl,l)eidv

=

∫
R
eijk(

∂xj − x0j

∂xl
Tkl + r0jTkl,l)eidv

=

∫
R
eijk(

∂xj
∂xl

Tkl + r0jTkl,l)eidv

=

∫
R
eijk(δjlTkl + r0jTkl,l)eidv

=

∫
R
(eijkTkjei + r0 × div[T ])dv

(AMB :)

∫
R
r0 × (ρv̇ − ρb− div[T ])︸ ︷︷ ︸

=0 since LMB(Local)

=

∫
R
eijkTkjeidv → eijkTkj = 0

Now using the e− δ identity:

0 = eimneijkTkj

= (δmjδnk − δmkδnj)Tkj
= Tnm − Tmn → Tmn = Tnm : (symmetry)

3.3.1 Stress Tensor

All quantities depend on {x, t}, but traction t depends more. Lets have a bar and we are
going to pull the bar from both sides with the force P , to analyze the bar I am going to
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divide it into two from the position x at time t and look at the pieces, For the free body
diagrams of this pieces we have a traction field and a force acting on the body. Each body
piece has a traction field, let the left piece have the t(1)(x, t) and the right is t(2)(x, t). Then
the traction should be also depend on the outward unit normal as well since these two fields
should be different hence for the eulerian representations:

(1) t̃(x, t, n)

(2) t(1) = t̃(x, t, n) = −t̃(x, t,−n)

So each traction interface should have a counterpart, this is called the Cauchy’s Lemma:

T̃ (x, t)n︸ ︷︷ ︸
Cauchy’s Theorem

= t̃(x, t, n) = −t̃(x, t,−n)︸ ︷︷ ︸
Cauchy’s Lemma

Now we are goinf to show the equivalence of these equations

3.3.2 Cauchy Process

Time plays a big role but time plays no role in the derivation of this process, we will omit it
for simplification. Now, lets choose a tetrahedron sitting at x and choose the tetrahedron to
be formed by the e1, e2, e3. Let this be the Cauchy Tetrahedron C. Now this tetrahedron has 4
faces which has the outward unit normals with the areas of −e1(A1),−e2(A2),−e3(A3), n(A).
And let the inclined surface have the distance h to the other vertex. Lets recall some
geometric results:

A = An = Ani︸︷︷︸
Ai

ei

V =
1

3
Ah

Lets also define a position vector that resides inside this tetrahedron y.

(LMB :)

∫
C
ρv̇dv =

∫
C
ρbdv +

∫
∂C
tda now we ared decompose the surface integral into faces∫

C
ρ(v̇ − b)dv =

∫
∂C(n)

t̃(y, n)da+
∑
i

∫
∂C(i)

t̃(y,−ei)da

(∗)
∫
C
f̃(y)dv =

∫
∂C(n)

t̃(y, n)da−
∑
i

∫
∂C(i)

t̃(y, ei)da

Now recall the mean value theorem for any function g(y) at a point ȳ and integration length
of L, for this thm we assume smoothness and continuous requirement:

1

L

∫
gdy = g(ȳ)
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Now, assuming the sufficient smoothness use the mean value theorem:

∃ȳ ∈ D :

∫
D
g̃(ȳ)dv = g̃(ȳ)|D|

∃ȳ ∈ ∂D :

∫
∂D
g̃(ȳ)dv = g̃(ȳ)|∂D|

Hence (∗) is equivalent to:

f̃(ȳ)V = t̃(ȳ(n), n)A−
∑
i

t̃(ȳ(i), ei)Ai

Then we have 5 special points that satisfies this equation, we dont care about them only
thing is that they exists:

f̃(ȳ)
1

3
Ah = t̃(ȳ(n), n)A−

∑
i

t̃(ȳ(i), ei)Ani

t̃(ȳ(n), n)−
∑
i

t̃(ȳ(i), ei)ni = f̃(ȳ)
1

3
h

Let C shrink towards the point x : h→ 0, ȳ(n), ȳ(i) → x:

t̃(x, n) =
∑
i

t̃(x, ei)︸ ︷︷ ︸
t̃
(i)

(x)

ni = t̃
(i)

ni︸︷︷︸
ei·n

= [t̃
(i) ⊗ ei]n

In general, t̃(x, t, n) = T̃ (x, t)n

Recall undergraduate mechanics, for a body there are stresses in the direction of the
normals σx, σy, σz and the shear stresses on the face along the other axes τzy = τyz, τxy =
τyx, τzx = τxz. Matrix representation of the stress tensor is:

[σ] =

σx τxy τxz
τyx σy τyz
τzx τzy σz


Or for the 3 face T = t(i) ⊗ ei:

[t(1)] =

σxτyx
τzx

 , [t(2)] =

τxyσy
τzy

 , [t(3)] =

τxzτzy
σz

→ [σ]

if deformations
are small︷︸︸︷

= [{t(1)}{t(2)}{t(3)}] = [T ]

If the deformations are large there are other stress tensors that gets in the way.

t = Tn = Tei = (t(j) ⊗ ej)ei = t(j)δij = t(i)

Tij = ei · Tej = ei · t(j) = t
(j)
i , j: surface normal, i: component→ σij = σji
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3.4 Referential Forms of Linear and Angular Momen-

tum Balance

For an arbitrary surface with normal n and stress components as σnn as the normal stress
and τ as the tangential part:

t = σnn+ τ

σn = n · t = n · Tn, τ = t− σnn

Particular tyoes of stress states:

(1) Spherical(pure pressure): T = −pI → t = Tn = −pn∀n

[T ] =

−p 0 0
0 −p 0
0 0 −p


(2) Uniaxial/Biaxial/Triaxial Tension/Compression:

[T ] =

σ1 0 0
0 σ2 0
0 0 σ3


(3) Simple shear

[T ] =

 0 s1 s2

s1 0 s3

s2 s3 0


3.4.1 Referential Forms of Linear and Angular Momentum Bal-

ance

Lets have a bar and we are pulling it from both sides with F and we have a reference
configuration R0 and a cross section on that A. This are becomes a after the deformation
on the current configuration R. True Stress:

σ̃ =
F

a

Engineering stress:

σ =
F

A
=
F

a

a

A
= σ̃

a

A

Knowledge of deformation allows relating σ to σ̃. Lets define σ̂:

σ̂ = σ̃

(
a

A

)2
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We could build other stress measures without a physical meaning like we did just now. Now,
lets have a body on reference config R0 and current config R, also a motion map χ. Lets have
a cross section on the reference with differential area dA with normal N and counterparts
on the current body as da and n, Nanson’s Formula dictates:

nda = F#︸︷︷︸
JF−T

NdA

Also the traction relation:

t̃(x, t, n) = T̃ (x, t)n

From these attributes we can define the infinitesimal force:

dF = tda = Tnda

= pdA :


still acts on R in the direction of t

t = tiei
p = piei

→ p = t
da

dA

Construct a new stress tensor:

tda = Tnda

= TF#NdA

= pdA→ p = TF#N

Then the spatial form p̂ and referential form N is coupled with the two point tensor P̂

p̂(X, t,N) = P̂ (X, t)N, P = PiAei ⊗ eA

Now we have t : Cauchy traction, T : Cauchy Stress, p : Piola traction and P : 1st Piola-
Kuchhoff stress(1st P-K)

P = JTF−T → T =
1

J
PF T

AMB is easy:

T =
1

J
PF T = T T =

1

J
FP T → PF T = FP T ( local/referntial form of AMB)

For LMB we have the following:

d

dt

∫
R
ρvdv =

∫
R
ρbdv +

∫
∂R
tda

d

dt

∫
R0

ρ0vdV =

∫
R
ρbdv +

∫
∂R0

p︸︷︷︸
PN

dA

∫
R0

ρ0v̇dV =

∫
R0

ρobdv +

∫
R0

Div[P ]da
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Hence the local form of LMB in the referential space is:

Div[P ] + ρ0b = ρ0v̇

To summarize, the local forms of the balance laws are:

Spatial Referential
MB ρ̇+ ρdiv[v] = 0 ρ0 = ρJ

LMB div[T ] + ρb = ρv̇ Div[P ] + ρ0b = ρ0v̇

AMB T T = T PF T = FP T

Table 3.3: Summary of Balance Laws

These are all subject to the appropriate initial/boundary conditions. Concentrate on the
spatial form and assume T is symmetric, lets see the parameters:{

# of equations:χ̂(X, t)(3) + ρ(1) + T (6) = 10

# of equations:MB(1) + LMB(3) = 4

We have 6 missing equations. We must relate kinematics to kinetics. Kinematics relate to
strain and kinetics relate to stress. A one way to do it, as an undergraduate mechanics way
is generalized Hooke’s law, introducing a stiffness matrix:

{σ}6x1 = [C]6x6{t}6x1

These equations can change among different materials. One can introduce other stress
measures:

τ = JT : Kirchoff Stress Tensor

So that∫
R
Tdv =

∫
R0

τdV

Or

S = F−1P : 2nd P-K Stress Tensor

so that

S = ST S = JF−1TF−T → T =
1

J
FST T
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Chapter 4

Rigid Body Dynamics

4.1 RBD I

Lets have a body on reference configuration R0 at X and its current configuration R at x.
In general, center of mass CM :

CM =

{
X̄ = 1

m

∫
R0
ρ0XdV

x̄ = 1
m

∫
R ρxdV

Relative position vector:
wrt point o : r0 = x− x0

wrt CM:r̄ = x− x̄
R̄ = X − X̄

Now we should define rigid body motion:

x(X, t) = Q(t)︸︷︷︸
rotation

X + c(t)︸︷︷︸
translation

Q : proper orthogonal

F = Q→ det[F ] = 1→ ρ0 = ρ

(1) r̄ = QR̄ holds for rigid body dynamic(in general this not holds)

r̄ = x− x̄

= QX + c− 1

m

∫
R
ρ(QX + c)dv

= QX − 1

m

∫
R
ρQXdv + c− 1

m

∫
R
ρcdv

= QX −Q 1

m

∫
R0

ρ0XdV + c− c

= QX −QX̄ = Q(X − X̄) = QR̄
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(2) This item is always true P = mv̄ where v̄ = ˙̄x. It follows that F = m ˙̄v by LMB P̄ = F .

P =

∫
R
ρvdv =

d

dt

∫
R
ρxdv =

d

dt

m

m

∫
R
ρxdv = mv̄

(3) This item is also always true. Originally, M0 = Ḣ0
, this item dictates thatMCM = ḢCM

,
i.e. AMB holds with respect to center of mass.

H0 =

∫
R
r0 × ρvdv

=

∫
R
(r̄ + x̄− x0)× ρvdv

= (x̄− x0)×
∫
R
ρvdv︸ ︷︷ ︸
P

+

∫
R
r̄ × ρvdv︸ ︷︷ ︸
HCM

Likewise

M0 =

∫
R
r0 × ρbdv +

∫
∂R
r0 × tda

=

∫
R
(r̄ + x̄− x0)× ρbdv +

∫
∂R

(r̄ + x̄− x0)× tda

= (x̄− x0)×
(∫

R
ρbdv +

∫
∂R
tda

)
︸ ︷︷ ︸

F

+

∫
R
r̄ × ρbdv +

∫
∂R
r̄ × tda︸ ︷︷ ︸

MCM

Now

Ḣ0
= ˙̄x× P︸ ︷︷ ︸

0

+(x̄− x0)× Ṗ︸︷︷︸
F

+ḢCM

= (x̄− x0)× F + ḢCM

and

M0 = (x̄− x0)× F +MCM →MCM = ḢCM

(4) One may write ˙̄r = ω × r̄ where ω : angular velocity vector(constant for R):

r̄ = QR̄ R̄ = QT r̄

˙̄r = Q̇R̄

= Q̇QT r̄
˙

QQT = 0 = Q̇QT +QQ̇
T → Q̇QT = −(Q̇QT )T (skew : Ω, axial vector:ω)

= ω × r̄
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(5) HCM = JCMω where JCM : inertia tensor with respect to CM:

HCM =

∫
R
r̄ × ρvdv

=

∫
R
r̄ × ρ ˙̄rdv +

(∫
R
ρr̄dv

)
︸ ︷︷ ︸

0

×v̄

=

∫
R
ρr̄ × (ω × r̄)dv

(Recall:)a× (b× c) = ((a · c)b− (a · b)c)

=

∫
R
ρ((r̄ · r̄)ω − (r̄ · ω)r̄)dv

=

∫
R
ρ(r̄ · r̄I − r̄ ⊗ r̄)dv︸ ︷︷ ︸

JCM

ω

4.2 RBD II

(6) JCM = QJCM0 QT :

JCM =

∫
R
ρ(r̄ · r̄I − r̄ ⊗ r̄)dv (r̄ = QR̄)

=

∫
R0

ρ0(R̄ · R̄QQT −Q(R̄⊗ R̄)QT )dV

= Q

∫
R0

ρ0(R̄ · R̄I − R̄⊗ R̄)dV QT

= QJCM0 QT

Summary:

x(X, t) = Q(t)X + c(t)→ what are Q and c?

(LMB :)F = m ˙̄v

From here solve for ā = ˙̄v then update v̄:

v̄ = v(X̄) = Q̇X̄ + ċ (4.1)

(AMB :)MCM = ḢCM ← HCM = JCMω ← ˙̄r = ω × r̄ = Ωr̄

= J̇
CM

ω + JCM ω̇︸︷︷︸
α

= ω × JCM︸ ︷︷ ︸
TBS in HW

ω + JCMα

From here solve for α then update ω
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(7) Prove König decomposition for a kinetic energy T :

T = Ttraslational + Trotational

T =
1

2

∫
R
ρv · vdv

=
1

2

∫
R
ρ( ˙̄r + v̄) · ( ˙̄r + v̄)dv

=
1

2

∫
R
ρdv︸ ︷︷ ︸
m

v̄ · v̄ + v̄

∫
R
ρ ˙̄rdv︸ ︷︷ ︸

d
dt

∫
R ρr̄dv=0

+
1

2

∫
R
ρ ˙̄r · ˙̄r︸ ︷︷ ︸

(∗) ˙̄r=ω×r̄

dv

(∗) = eijkeimn︸ ︷︷ ︸
δjmδkm−δjnδkn

ωj r̄kωmr̄n

= (ωmωm)(r̄nr̄n)− ωm(r̄mr̄n)ωn

= ω(r̄ · r̄I)ω − ω(r̄ ⊗ r̄)ω
= ω(r̄ · r̄I − r̄ ⊗ r̄)ω

T =
1

2
mv̄ · v̄︸ ︷︷ ︸

Ttranslational

+
1

2
ω

∫
R
ρ(r̄ · r̄I − r̄ ⊗ r̄)dv︸ ︷︷ ︸

JCM

ω

︸ ︷︷ ︸
Trotational

(8) Prove that parallel axis theorem: J0 = JCM + JCM/0

J0 =

∫
R
ρ(r0 · r0I − r0 ⊗ r0)dv

(r0 = x− x0, r̄ = x− x̄, r̄0 = x̄− x0)→ (r0 = r̄ + r̄0)

=

∫
R

ρ((r̄ + r̄0) · (r̄ + r̄0)I − (r̄ + r̄0)⊗ (r̄ + r̄0))dv

=

∫
R
ρ(r̄ · r̄I − r̄ ⊗ r̄)dv +

∫
R
ρ(r̄0 · r̄0I − r̄0 ⊗ r̄0)dv + 2r̄0 ·

∫
R
ρr̄dvI

− r̄0 ⊗
∫
R
ρr̄dv −

∫
R
ρr̄ ⊗ r̄0

=

∫
R
ρ(r̄ · r̄I − r̄ ⊗ r̄)dv︸ ︷︷ ︸

JCM

+

∫
R
ρ(r̄0 · r̄0I − r̄0 ⊗ r̄0)dv︸ ︷︷ ︸
JCM/0=m(r̄0·r̄0I−r̄0⊗r̄0)

Remark: Note that M0 = Ḣ0
is reformulated wrt center of mass MCM = ḢCM and

HCM = JCMω. Now the question is whether the following holds: H0 = J0ω such that
we can simplify equations, however this is not true in general. To see this lets see the
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results from 3:

H0 = HCM + (x̄− x0)× P
= JCMω + r̄0 ×mv̄

Now, if v̄ = ω × r̄0 (not true in general, even in 2D for example only rotating disc
without a linear velocity). This holds if we have a disc swinging about the fixed point.
Then.

H0 = JCMω +mr̄0 × (ω × r̄0)

= JCMω + JCM/0ω

= J0ω
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Chapter 5

Linear Elasticity

Here deformations are large(finite) or small(infinitesimal). Linear elasticity assume small
deformations. Lets have length of L on a dimension:

x = X + u u : displacement vector

F =
∂x

∂X
= I +

∂u

∂X︸︷︷︸
H

H : displacement gradient

Linearization

Small deformation means that magnitude of the deformation |H| << 1 practical way of
checking this is |u|/L << 1, keep in mind that this is true for small rotations and stretches.

Linearized kinematics: retain terms of order O(H) or O(|u|/L), Lets look into right
cauchy-green deformation tensor:

F = I +H( already linear)

C = F TF → E =
1

2
(C − I) =

1

2
((I +HT )(I +H)− I) =

1

2
(H +HT )︸ ︷︷ ︸

ε

+
1

2
HTH︸ ︷︷ ︸
omit

ε : Infinitesimal strain tensor

For the left cauchy-green tensor, for this we need the inverse of F and for that we can use
the power series expansion on (I +H)−1 and take the linear components:

b = FF T → e =
1

2
(I − b−1) =

1

2
(I − (I −HT )(I −H)) =

1

2
(HT +H)︸ ︷︷ ︸

ε

− 1

2
HTH︸ ︷︷ ︸
omit

Hence when deformations are small, all the strain measures are equal. Then the linearized
derivation is:

∂u

∂X
=
∂u

∂x

∂x

∂X
=

∂u

∂x︸︷︷︸
O(H)

+
∂u

∂x
H︸ ︷︷ ︸

O(H2)

≈ ∂u

∂x
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Small strain ∼ ε = Hsym

Small rotation ∼ ... = Hskw

5.1 Linearized Kinetics

P = P̂ (F )→ 0P̂ (I), no deformation no stress:

J = det[F ] = 1 + tr[H]→ ρ0 = ρJ ≈ ρ

T =
1

J
PF T ≈ 1

1 + tr[H]
P (I +H)T ≈ P︸︷︷︸

O(H)

+PHT︸ ︷︷ ︸
O(H2)

≈ P

S = F−1P ≈ (I −H)P ≈ P

T ≈ S ≈ P = σ : infinitesimal stress tensor(symmetric)

All stress measures are equal in the linearized settings.

LMB : div[σ] + ρb = ρ ˙̇u← σ = σ̂(ε)

5.2 Material Model(Constitutive Formulation)

Lets use the stretched rod example from before. We had the stretching force P and cross
section A. In large deformations stress might depend on the history of the deformation and
we might not return to original state. In elastic domain we stay inside the linear region and
relations are quite simple(Hooke’s law):

σ = Eε

where E is the young’s modulus. For the 3D we have the following:

σ = Cε

where C is a constant fourth order stiffness tensor since it is the most general mapping
between two 2nd order tensor.

5.3 Material Symmetry

Currently we have the following:

σij︸︷︷︸
3×3︸︷︷︸

6 indep

= Cijkl︸︷︷︸
3×3×3×3︸ ︷︷ ︸
21 indep

εkl︸︷︷︸
3×3︸︷︷︸

6 indep
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Number of independent constants depend on material symmetry. If we were to map these
independent variables as matrix and vector products where upper three component is normal
components and the bottom three components are shear components:

σ11 = σx
σ22 = σy
σ33 = σz
τ23 = τyz
τ13 = τxz
τ12 = τxy

→

ε11 = εx
ε22 = εy
ε33 = εz

2ε23 = γyz
2ε13 = γxz
2ε12 = γxy


Here comes the material symmetry where:

{ε}6×1 = [S]6×6{σ}6×1

{σ}6×1 = [C]6×6{ε}6×1 → [C] = [S]−1

Here S is called the compliance tensor and C is called the stiffness tensor and both of these
are symmetric. Keep in mind that this convention is not same across different fields, this is
the voigt notation, another notation is the mandel notation.

5.3.1 Isotropy

Here the compliance matrix has the following properties:

[S] =


1/E −ν/E −ν/E
−ν/E 1/E −ν/E
−ν/E −ν/E 1/E

Ø

Ø
1/µ 0 0
0 1/µ 0
0 0 1/µ


These relations come from the following:

εx =
1

E
(σx − ν(σy + σz))

γxy =
1

µ
τxy

Here E : Young’s Modulus > 0, ν : Poisson Ratio∈ [−1, 1/2] for isotropic materials, µ : shear
modulus > 0:

µ =
E

2(1 + ν)

Stiffness matrix is the following:

[C] =


2µ+ λ λ λ
λ 2µ+ λ λ
λ λ 2µ+ λ

Ø

Ø
µ 0 0
0 µ 0
0 0 µ


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λ : Lame Constant:

λ =
Eν

(1 + ν)(1− 2ν)

Then in the tensor notation:

σ = λtr[ε]I + 2µε

= (λ+
1

3
)︸ ︷︷ ︸

κ:bulk modulus >0

tr[ε]I + 2µεdev

= κtr[ε]I + 2µεdev

κ =
E

3(1− 2ν)

In isotropy, there are only two independent constant. This is the highest level of symmetry.
In this sense it is orientation independent. For an isotropic material we can give examples
of glass, polymers.

Cubic Symmetry

Single crystal metals have three types of cubic symmetry.

1 If a cube structure is not accompanied by any other atom it is called simple cubic, this is
very rare. One example is polonium

2 If the cube structure has a central atom as well it is called body centered cubic structure.
Iron and tungsten are such materials.

3 If these atoms are sitting on faces of this cubic structures it is called face centered cubic
structure. Aluminum and silver are such materials.

In the cubic symmetry [S] shows the identity of isotropy but µ 6= E
2(1+ν)

The upper and
lower bound for the ν are determined by the µ and κ constants where they are becoming
singularities

5.3.2 Orthotropy

There are 9 independent constants. Compliant materials like epoxy need strengthening
materials such as glass, carbon, kevlar fibers. This structure in 3D can be supported with
different stiffening materials in each axis to have different constants, in the case of fibers are
aligning with normal bases(x,y,z axes) we have the off-diagonal elements as 0 but if these

43



fibers did not aligned with these normal vectors we would not get 0 on these entries:

[S] =



1

Ex
−νyx
Ey

−νzx
Ez

−νxy
Ex

1

Ey
−νzy
Ez

−νxz
Ex

−νyz
Ey

1

Ez

Ø

Ø

1

µyz
0 0

0
1

µxz
0

0 0
1

µxy


If we were to compare symmetry levels:

isotropy(2) < cubic(3) < transverse isotropy(5) < otrhotropy(9)
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Chapter 6

Mechanics of Soft Materials

6.1 Internal Power

LMB in local spatial form dictates:

div[T ] + ρb = ρv̇

Then ∀w = w̃(x, t):

0 =

∫
R
w · (ρv̇ − div[T ]− ρb)dv

=

∫
R
w · ρv̇dv −

∫
R
w · div[T ]dv︸ ︷︷ ︸

−
∫
R grad[w]·Tdv+

∫
∂R w·Tnda

−
∫
R
w · ρbdv

∫
R
w · ρv̇dv︸ ︷︷ ︸

1

+

∫
R

grad[w]Tdv︸ ︷︷ ︸
2

=

∫
R
w · ρbdv +

∫
∂R
w · tda︸ ︷︷ ︸

3

Principle of D’Alambent where v̇ = 0(Quasistatics) links principle of virtual work. Now lets
pick w = v:

1 = Ṫ since T =
1

2

∫
R
ρv · vdv

3 = Pext(Power of external forces)

2 = Pint(Power of internal forces)

Hence

Pext = Ṫ + Pint
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Hence the Pint is associated with the work needed for deformation.

Pint =

∫
R
T · Ldv

=

∫
R0

τ · LdV

=

∫
R0

τ · ḞF−1dV

=

∫
R0

τ · F−T Ḟ dV

=

∫
R0

P · Ḟ︸ ︷︷ ︸
stress power

dV

=

∫
R0

S · F T Ḟ dV

=

∫
R0

S · (F T Ḟ )symdV

=

∫
R0

S · Ė︸ ︷︷ ︸
stress power

dV

6.2 Hyperelasticity

Lets have a space defined by the eigenvalues ΛĩE . Lets have two configuration and the path
that links them, from 1 to 2 we have A and from 2 to 1 we have B. We are going to look at
the work needed to change to these configurations.

workA1−2 =

∫ 2

1

S · ˙dEdt

=

∫ 2

1

S · dE =

∫ 2

1

dW

workB2−1 =

∫ 1

2

S · dE =

∫ 1

2

dW

SUM THESE TWO :

0 =

∮
S · dE =

∮
dW

If we say that this is 0 our material is not dissipating any energy and this equivalent to

material being elastic. This integral is path independent. dW = S · dE → S =
∂W

∂E
. Stress

must come from a potential and this potential is W .

The relation S =
∂W

∂E
or P =

∂W

∂F
is called hyperelasticity. W = Ŵ (E) or W = Ŵ (F )

and W is strain energy function.
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For an isotropic material, the orientation of the three eigenvalues of E does not change
the stored energy.

E =
∑
α

ΛαVα ⊗ Vα

QFQT =
∑
α

ΛαQVα ⊗QVα → Ŵ (E) = Ŵ (QFQT )

Then an isotropic representation theorem states:

W = W̄ (Λ1,Λ2,Λ3)

= Ŵ (IE, IIE, IIIE)

Then we have 3DOF. For an isotropic material stress is found through using cayley hamilton
theorem:

S =
∂W

∂E
=
∂W

∂IE

∂IE
∂E︸︷︷︸
I

+
∂W

∂IIE

∂IIE
∂E︸ ︷︷ ︸

IEI−E

+
∂W

∂IIIE

∂IIIE
∂E︸ ︷︷ ︸

IIIEE
−1

= α0I + α1E + α2E
2

where

α0 =
∂W

∂IE
+ IE

∂W

∂IIE
+ IIE

∂W

∂IIIE
α1 = − ∂W

∂IIE
− IE

∂W

∂IIIE
α2 =

∂W

∂IIIE

In linear elasticity: σ = Cε

Pext = Ṫ + Pint

This mechanical energy balance. We have a stress power:

P · Ḟ = S · Ė

6.3 Isotropic Strain Energy Functions

6.3.1 Linear Elasticity

In the linear case σ = Cε. Where σ = κtr[ε]I + 2µεdev. Energy in the small deformation
regime is measured, we apply force and record the displacement. This turns out to be

ω =
1

2
σ · ε =

1

2
ε · Cε

=
1

2
κtr[ε]I · ε+ µεdev · ε

=
1

2
κ(tr[ε])2︸ ︷︷ ︸
ωvol

+µεdev · εdev︸ ︷︷ ︸
ωshear=ωdev
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This is called infinitesimal strain energy function. This is a special case for a general nonlinear
formulation. This expression will be a basis for nonlinear formulation. J = 1 + tr[ε]. In this
expression we have a volumetric-deviatoric decoupling.

(i) Kirchhoff-St. Venant:

S = CE = κtr[ε]I + 2µεdev

This also holds for anisotropy and we do not need to do additional calculations.

W =
1

2
S · E

=
1

2
E · CE

=
1

2
κ(tr[E]) + µEdev · Edev

This one is suitable when the strain is small, or stretch is small. In the case of small
stretch and large rotations this will still work since E filters out the rotations. This is
for fabric, thin sheets, ropes.

(ii) Neo-Hooke: This model still incorporates two constant parameters but maintains a
highly non linear formulation:

W =
1

2
κ(ln J)2︸ ︷︷ ︸
W vol

+
1

2
µ(J−2/3tr[C]− 3)︸ ︷︷ ︸

W dev

S =
∂W

∂E
=
∂W vol

∂E
+
∂W dev

∂E

∂W vol

∂E
= 2

∂W vol

∂C
= 2κ ln J

∂ ln J

∂C
= 2κ

ln J

J

∂J

∂C
= 2κ

ln J

J

1

2

1√
IIIC

∂IIIC
∂C

= κ ln JC−1

∂W dev

∂E
= 2

∂W dev

∂C
= µ(

−2

3
J−5/3 ∂J

∂C
tr[C] + J−2/3∂tr[C]

∂C
)

= µJ−2/3(
−1

3
tr[C]C−1 + I)

S = κ ln JC−1 + µJ−2/3(I − 1

3
tr[C]C−1)

T =
1

J
FSF T

= κ
ln J

J
FC−1F T + µJ−5/3(FF T︸ ︷︷ ︸

b

−1

3
tr[b]FC−1F T )

= κ
ln J

J
I︸ ︷︷ ︸

T sph

+µJ−5/3bdev︸ ︷︷ ︸
T dev
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(iii) Ogden:

W = W vol +W dev

W vol = Ŵ (J) :

{
from Neo-Hooke, or
K
4

(J2 − 2 ln J − 1)

W dev =
M∑
p=1

µp
αp

(Λ
αp

1 + Λ
αp

2 + Λ
αp

3 − 3)

Where Λis are the principal stretches of J−1/3F and Λ1Λ2Λ3 = 1. This should return
to the linear model so we have a constraint:

M∑
p=1

µpαp = 2µ

So we divide the referential representation into M representatino states:

R0 =
M∑
i=1

R(i)
0
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Chapter 7

Atomic To Continuum Scale
Transition
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Chapter 8

Navier-Stokes Equations

Any configuration of the fluid can be taken as reference configuration, which implies the
memoryless property of the systems. But because of technical and practical reasons we will
work in only one configuration.

8.1 Kinematics of Fluid Motion

This is actually the content of fluid dynamics course but we will look into the vorticity term.
Recalling RBD:

x = QX + c→ F = Q

L = ḞF T = Q̇QT = Ω : skew tensor and has the axial vector ω

v = v̄ + r̄, r̄ = v − v̄
r̄ = x− x̄→ ¯̇r = Ωr̄ = ω × r

Consequentially

1

2
∇× v = ω = −1

2
eijkΩjkei

In general L = D + W where D is symmetric, contributing to stretching and W is skew
symmetric, contributing to vorticity. Here stretching D = 0 for RBD since L = Ω = W .
Axial vector of W is w = −1

2
eijk Wjk︸︷︷︸

vj,k−vk,j

ei = 1
2
∇× v.

Clearly fluid is not a rigid body. Lets choose a spherical volume inside a fluid. Then D
represents the rate of stretching along the principal directions of D and deforms the spheres
into ellipsoids. W is the rate of rotation about the point of interest, in the context of fluid
sphere it is the rotation of the small volume of water.

Now that ∇ × v is vorticity, we can define some states. ∇ × v = 0 is irrotational flow,
and ∇ · v = 0 solenoidal flow. If we consider the strain energy function we define more
states. If v = ∇φ then ∇× v = 0 and this is sufficient. It turns out that for irrotational flow
v = ∇φ which is necassary to insure ∇× v = 0. Then φ = φ̃(x, t) is the velocity potential.
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8.2 Kinetics of Fluid Motion

From the mass balance we have the following local form ρ̇ + ρ∇ · v = 0. Here incompress-
ibility dictates that ρ̇ = 0 which indicates ∇ · v = 0 = tr[L] = tr[D]→ Ddev = D suggesting
solenoidal flow.

From the linear momentum balance we have ∇ · T + ρb = ρv̇. We will look into Linear
Elasticity because a newtonian viscous fluids similar to the modeling of stress in linear
elasticity. Recall that for isotropic linear elasticity, κ is bulk modulus and µ is shear modulus:

σ = κtr[ε]I + wµεdev

ε = Hsym = ∇u

if κ >> µ→ or κ→∞ which means that solid objects are incompressible.
κtr[ε] = −p : finite → tr[ε] = 0
J = 1 + tr[ε] = 1 : no volume change.
So, εdev = ε− 1

3
tr[ε]I ≡ ε:

σ = −pI + 2µε

here −p acts as an lagrange multiplier that enforces a constraint and the constraint here is
tr[ε] = 0

8.3 Newtonian Viscous Flow

This implies incompressibility, as a consequence volume should not change. In the case
of linear elasticity ε is the symmetric part of the (∇u)sym, in the linear elasticity context
(∇u)skew corresponds to rotation and that does not contribute to stress hence the omitting.
Going back to the fluid context, lets call viscosity µ:

T = −pI + 2µD, D = (∇v)sym

Here the pressures acts as an lagrange multiplier to enforce the vanishing of tr[D] = 0 or
∇ · v = 0. Here rotations also should not play a role: (∇v)skew ≡ W where Ddev = D.
Here viscosity is a constant µ. In general T = T̂ (D), nonlinear function of the displacement
gradient.

Back to LMB:

∇ · [−pI + 2µD] + ρb = ρv̇

[−pI + 2µD] = [−pδij + µ(vi,j + vj,i)],jei

= (−p,i + µ(vi,jj + vj,ij))ei

= (−p,i + µ(vi,jj + vj,ji))ei

= (−p,i + µ( vi,jj︸︷︷︸
∇ · ∇v = ∇2v︸ ︷︷ ︸

+ (vj,j)i︸ ︷︷ ︸
tr[L]=0

))ei

−∇p+ µ∇2v + ρb = ρ(
∂v

∂t
+ (∇v)v)
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This is called Navier-Stokes equations. Subject to ∇ · v = 0. Now we have 4 equations and
4 unknowns. 3 equations coming from N-S and one from the constraint. Pressure and the
velocity field constitutes 4 unknowns. This equations may seem easy but it is hard to satisfy.
There is a numerical challenge in satisfying the constraint. There is a physical challenge in
the right hand side of the vectorial equation form which is not linear in v, this non linearity
causes richness in the physics and makes the solution harder.

8.4 Special And Alternative Forms

To get rid off the body force:

ρ : constant , b = −ge3 → ρb = ∇[ρb · x]

−∇ (p+ ρgx3)︸ ︷︷ ︸
p̃: head

+µ∇2v = ρv̇

From now on we are going to use p = p̃. Now the mass balance dictates ∇ · v = 0. For
the LMB we see that T = T̃ (L) = T̃ (D). Stress is not generated through displacement but
velocity.
This is a very specific case where we are considering newtonian viscous flow. Now this leaves
us in the equations:

∇ · v = 0

−∇p+∇2v = ρv̇

8.4.1 Irrotational (Potential) Flow

∇× v = 0, v = ∇φ. Mass balance:

∇ · v = ∇2φ = 0

This may be solvable on its own. Solve for φ̃(x, t) which also solves for v then plug that
into LMB and find the pressure p̃(x, t). However this example is not a realistic assumption
because none of the fluids are irrotational. But this solution may give an idea about the
characteristics about the flow field. We can use this solution and add some correction terms
to it to get the nearly good solution for other systems.

8.4.2 Invicid (Euler) Flow

−∇p = ρv̇ which makes µ = 0. This works in the flow where the reynolds number is high,
this can be due to high velocity. Meaningful approximation where the pressure variations
are mostly die to inertial effects. In other words away from the boundary layers. E.g. flow
around an airplane.
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8.4.3 Creeping (Stokes) Flow

In this flow reynolds number is quite low. v is small, now

v̇ ≈ ∂v

∂t
= 0

Negligible inertial effects:

−∇p+∇2v = 0

Which makes the problem linear. Examples are flow in porous media, microfluidic devices.

8.4.4 Dimensionless Form

Now let t∗ = t
t0

, x∗ = x
L0

, v∗ = v
v0

, p∗ = p
p0

.

∇ · v =
∂vi
∂xi

= 0

− ∂p

∂xi
+ µ

∂2vi
∂x2

j

= ρ(
∂vi
∂t

+
∂vi
∂xj

vj)

We are going to choose p0 = ρv2
0, t0 = L0

v0
. L0 corresponds to reference length chose according

to your structure, and v0 is order of magnitude that velocity experiences in terms of change.

∂v∗i
∂x∗i

= 0

−∂p
∗

∂x∗i
+

1

Re

∂2v∗i
∂x∗2j

=
∂v∗i
∂t∗

+
∂v∗i
∂x∗j

v∗j

Re =
ρv0L0

µ

8.4.5 Turbulence

Now the reynolds numbers characterizes the nature of the flow, there are some critical
reynolds numbers Re > Recritical(O(103 − 104)) >> 1. What we observe in turbulence is
that we are looking at the structures in the flow fields, it is always 3D

1. 3D

2. Observing a lot of randomness. Random: irregular, chaotic behaviour, you replicate
the experiment side to side you get different results, unpredictable

3. Nonlinear: convective inertia dominates, cannot simplify this. This embodies the major
difficulty with the turbulence.

4. Diffusive: momentum and temperature mixing occurs rapidly. In turbulent fields fluid
particles advects these attributes to the further volumes making it easier to diffuse over
the medium.
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5. Vorticity: flow field has identifiable rotational flow structures, eddies. These occur at
many different length and time scales. Length and time scale are inversely associated
in these structures.

6. Dissipative: this is related to velocity gradient, there is always dissipation in fluids but
in turbulent ones viscosity dissipates energy at small length scales which leads to large
gradients. To maintain a turbulent flow we must put energy into it.

Very strong fluctuations of v in t occurs. We are going to average it out:

a(t) = ā︸︷︷︸
mean

+ ã(t)︸︷︷︸
fluctuations

ā =
1

τ

∫ t0+τ

t0

a(t)dt =< a >

For the velocity we are going to decompose it in the same way, v = v̄+ ṽ(t). We can make the
average as a function of time and make it as a window average function that will smooth out
the velocity and filter out the high frequency fluctuations. We can also have the number of
different experiments and take the average of them which is the ensemble averaging operation.

Eventually < ã >= 0 and this implies < ṽ >= 0. Lets remind N-S equations:

−∇p+ µ∇2v = ρv̇

∇ · v = 0

Now we will average out these equations as well. Velocity fields is highly oscillatory in time
and space. If we want to solve this with grids or particles we should have tiny spaces. In
the smooth versions we dont have these. We can resolve thse equations to mean version, we
are going the discuss the possibility of the following altered equations:

−∇p̄+ µ∇2v̄ = ρ ˙̄v

∇ · v̄ = 0

Starting with the mass balance:

< ∇ · v > = ∇· < v >

= ∇ · v̄ = 0

∇ · ṽ = 0

For the linear momentum balance we have the following:

< −∇p > + < µ∇2v > =< ρv̇ >

−∇ < p > +µ∇2 < v > = ρ
∂ < v >

∂t
+ ρ < ∇vv >

−∇ < p > +µ∇2 < v > = ρ
∂ < v >

∂t
+ ρ < ∇(v̄ + ṽ)(v̄ + ṽ) >

−∇ < p > +µ∇2 < v > = ρ
∂ < v̄ >

∂t
+ ρ[< ∇v̄v̄ > + < ∇ṽv̄ > + < ∇v̄ṽ > + < ∇ṽṽ >]

−∇p̄+ µ∇2v̄ = ρ
∂v̄

∂t
+ ρ[∇v̄v̄+ < ∇ṽṽ >]

55



using the divergence constraint we can see that < ∇ṽṽ >≡ ∇ · [< ṽ ⊗ ṽ >]. Then we ended
up with the averaged MB:

∇ · v = 0

And averaged LMB:

−∇p̄+ µ∇2v̄ = ρ
∂v̄

∂t
+ ρ∇v̄v̄︸ ︷︷ ︸
ρ ˙̄v

+ρ∇ · [< ṽ ⊗ ṽ >]

LMB can be expressed alternatively as:

∇ · T̄ = ρ ˙̄v

T̄ = −p̄I + 2µ D̄︸︷︷︸
(∇v̄)sym

−ρ < ṽ ⊗ ṽ >︸ ︷︷ ︸
R:additional

Where R is Reynolds stress tensor. These averaging called Reynolds Averaging and these
equations are called Reynolds Averaged Navier-Stokes(RANS). If the additional Reynolds
stress tensor is small it can be neglected. To solve RANS we must model R, these can be
modeled in terms of mean fields R = R(v̄). This modeling becomes easier if we invoke the
isotropy, then it must follow the form of R = rI. In this case we observe similar rotational
structures that is isotropic turbulence. If not applicable we have anisotropic turbulence.
In this case we must model it so that it is manageable, which is cheaper solution, coarse
resolution in time and space. It turns out that RANS is the simplest model. There is RANS
in one extreme and full solution of N-S in other extreme. This solution is the DNS which
direct numerical simulations. Observing turbulence can be achieved with this expensive
method. Turbulence is the graveyard of theories, they dont always work but there is not a
universal simplification to DNS.
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